
OUR TOPIC IS OPERATOR OVERLOADING AND

TYPE CONVERSIONS

BY HARDEEP SINGH

ACTUALLY WHAT IS OPERATOR OVERLOADING

Operator

Task1

Task2

Task3

BY HARDEEP SINGH

KEY CONCEPTS

• Introduction

• Defining operator overloading

• Operator functions

• Overloading unary operator

• Overloading binary operators

• Using friends for overloading

• Overloading rules

• Type conversions

• Basic to class type

• Class to basic type

• Class to class type

BY HARDEEP SINGH

INTRODUCTION

• Operator overloading is the one of the many exciting features of C++ language. It is an

important technique that has enhanced the power of extensibility of C++. C++ tries to

make the user defined data types behave in much the same way as the built-in data type .

For instance , C++ permits us to add two variables of the user defined data types with

same syntax that is applied to basic data types. This means that C++ has the ability to

provide the operator with a special meanings to an operator is known as operator

overloading.

BY HARDEEP SINGH

DEFINING THE OPERATOR OVERLOADING

• Operator function - Defines the new task which is going to assign to the operator.

Return type classname :: operator op(arglist)

{

 function body //task defined

}

BY HARDEEP SINGH

FEW EXAMPLES OF OPERATOR FUNCTION

DEFINITION

 Void space::operator-()

 {

 x = -x;

 y = -y;

 z = -z;

 }

Complex ::operator+(complex c)

{

 complex temp;

temp.x = x + c.x ;

temp.y = y + c.y ;

}

BY HARDEEP SINGH

OVERLOADING UNARY OPERATOR

#include<iostream.h>

#include<conio.h>

class space{

 int x,y,z;;

 public:

 void getdata(int,int,int);

 void display();

 void operator-(); //overload unary minus

 };

void space::getdata(int a,int b,int c)

{

 x=a; y=b; z=c;

}

BY HARDEEP SINGH

CONTINUED…….

void space::display(void)

{

 cout<<x<<“\n”;

 cout<<y<<“\n”;

 cout<<z<<“\n”;

}

void space::operator-()

{

 x = -x;

 y = -y;

 z = -z;

}

int main()

{

space S;

S.getdata(10,-20,30);

cout<<“S : ”; S.display();

-S; //activates operator-() function

cout<<“S : “;

S.display();

getch();

return 0;

}

BY HARDEEP SINGH

 OUTPUT FOR THE PROGRAM

BY HARDEEP SINGH

OVERLOADING BINARY OPERATORS

As we have overload an unary operator, same mechanism can be used to overload a binary

operator. To add two no. using a friend function a statement like

 c=sum(a.b); //functional notation

can be replaced with help of the operator overloading of +operator by using the expression

c=a+b; //arithmetic notation

First operand

Second operand

Binary

operator

BY HARDEEP SINGH

PROGRAM FOR OVERLOADING BINARY

OPERATOR

#include<iostream.h>

class complex

{

 float x; //real part

 float y; //imaginary part

 public:

 copmlex(){ }

 complex(float real,float imag)

 {x=real;y=imag;}

 complex operator+(complex);

 void display();

};

BY HARDEEP SINGH

CONTINUED………..

 complex complex::operator+(complex c)

{

 complex temp; //temporary

 temp.x=x+c.x;

 temp.y=y+c.y;

 return (temp);

}

void complex::display()

{

 cout<<x<<"+j"<<y<<endl;

}

BY HARDEEP SINGH

CONTINUED………..

int main()

{

 complex c1,c2,c3;

 c1=complex(2.5,3.5); //invokes the constructer 1

 c2=complex(1.6,2.7); //invokes the constructor 2

 c3=c1+c2;

 cout<<"c1=";c1.display();

 cout<<"c2=";c2.display();

 cout<<"c3=";c3.display();

 getch();

 return 0;

}

BY HARDEEP SINGH

THE RESULT WILL BE LIKE THIS

BY HARDEEP SINGH

RULES FOR OPERATOR OVERLOADING

1. Only existing operator can be overloaded. New operators can not be created.

2. The overloaded operator must have at least one operand that is of user defined data

type.

3. We can’t change the basic meaning of an operator. That is to say, we can’t redefine

the plus(+) operator to subtract one value from other.

4. Overloaded operators follow the syntax rules of the original operators. They can’t be

overridden.

5. There are some operators that can’t be overloaded.

6. We can’t use friend functions to overload certain operators. How-ever , member

functions can be used to overload them.

7. Unary operators overloaded by means of member function , take no explicit

arguments and return no explicit values, but, those overloaded by means of the

friend function, take one reference argument (the object of the relevant class).

8. Binary operators overloaded through a member function, take one explicit argument

and those which are overloaded through a friend function take two explicit

arguments.

BY HARDEEP SINGH

CONTINUED…………

9 When using binary operators overloaded through a member function, the left hand

operand must be an object of the relevant class.

10 Binary arithmetic operators such as +,-,* and / must explicitly return a value. They

must not attempt to change their own arguments.

BY HARDEEP SINGH

UNDER TYPE CONVERSIONS

Basic data

type

class data

type

Type

conversion

Predefined data types User defined data types to

BY HARDEEP SINGH

UNDER TYPE CONVERSIONS

Basic data

type

class data

type

Type

conversion

Predefined data types User defined data types from

BY HARDEEP SINGH

UNDER TYPE CONVERSIONS

Basic data

type

Class 2 data

type

Type

conversion

User defined data types User defined data types to

Class 1 data

type

BY HARDEEP SINGH

Thanks a lot for listening

Now please clear your doubts , if any

BY HARDEEP SINGH

